9 research outputs found

    Computational explorations of semantic cognition

    Get PDF
    Motivated by the widespread use of distributional models of semantics within the cognitive science community, we follow a computational modelling approach in order to better understand and expand the applicability of such models, as well as to test potential ways in which they can be improved and extended. We review evidence in favour of the assumption that distributional models capture important aspects of semantic cognition. We look at the models’ ability to account for behavioural data and fMRI patterns of brain activity, and investigate the structure of model-based, semantic networks. We test whether introducing affective information, obtained from a neural network model designed to predict emojis from co-occurring text, can improve the performance of linguistic and linguistic-visual models of semantics, in accounting for similarity/relatedness ratings. We find that adding visual and affective representations improves performance, especially for concrete and abstract words, respectively. We describe a processing model based on distributional semantics, in which activation spreads throughout a semantic network, as dictated by the patterns of semantic similarity between words. We show that the activation profile of the network, measured at various time points, can account for response time and accuracies in lexical and semantic decision tasks, as well as for concreteness/imageability and similarity/relatedness ratings. We evaluate the differences between concrete and abstract words, in terms of the structure of the semantic networks derived from distributional models of semantics. We examine how the structure is related to a number of factors that have been argued to differ between concrete and abstract words, namely imageability, age of acquisition, hedonic valence, contextual diversity, and semantic diversity. We use distributional models to explore factors that might be responsible for the poor linguistic performance of children suffering from Developmental Language Disorder. Based on the assumption that certain model parameters can be given a psychological interpretation, we start from “healthy” models, and generate “lesioned” models, by manipulating the parameters. This allows us to determine the importance of each factor, and their effects with respect to learning concrete vs abstract words

    ANDI @ CONcreTEXT: Predicting concreteness in context for English and Italian using distributional models and behavioural norms

    Get PDF
    In this paper we describe our participation in the CONcreTEXT task of EVALITA 2020, which involved predicting subjective ratings of concreteness for words presented in context. Our approach, which ranked first in both the English and Italian subtasks, relies on a combination of context-dependent and context-independent distributional models, together with behavioural norms. We show that good results can be obtained for Italian, by first automatically translating the Italian stimuli into English, and then using existing resources for both Italian and English

    Modeling the Structure and Dynamics of Semantic Processing

    Get PDF
    The contents and structure of semantic memory have been the focus of much recent research, with major advances in the development of distributional models, which use word co-occurrence information as a window into the semantics of language. In parallel, connectionist modeling has extended our knowledge of the processes engaged in semantic activation. However, these two lines of investigation have rarely been brought together. Here, we describe a processing model based on distributional semantics in which activation spreads throughout a semantic network, as dictated by the patterns of semantic similarity between words. We show that the activation profile of the network, measured at various time points, can successfully account for response times in lexical and semantic decision tasks, as well as for subjective concreteness and imageability ratings. We also show that the dynamics of the network is predictive of performance in relational semantic tasks, such as similarity/relatedness rating. Our results indicate that bringing together distributional semantic networks and spreading of activation provides a good fit to both automatic lexical processing (as indexed by lexical and semantic decisions) as well as more deliberate processing (as indexed by ratings), above and beyond what has been reported for previous models that take into account only similarity resulting from network structure

    EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020

    Get PDF
    Welcome to EVALITA 2020! EVALITA is the evaluation campaign of Natural Language Processing and Speech Tools for Italian. EVALITA is an initiative of the Italian Association for Computational Linguistics (AILC, http://www.ai-lc.it) and it is endorsed by the Italian Association for Artificial Intelligence (AIxIA, http://www.aixia.it) and the Italian Association for Speech Sciences (AISV, http://www.aisv.it)

    Team Andi @ CONcreTEXT 2020 and LCP 2021: context-independent distributional models

    No full text
    This repository makes available the (context-independent) distributional models employed by the author for participating in the CONcreTEXT challenge, part of EVALITA 2020

    Modelling the structure and dynamics of semantic processing

    No full text
    The contents and structure of semantic memory have been the focus of much recent research, with major advances in the development of distributional models, which use word co-occurrence information as a window into the semantics of language. In parallel, connectionist modeling has extended our knowledge of the processes engaged in semantic activation. However, these two lines of investigation have rarely been brought together. Here, we describe a processing model based on distributional semantics in which activation spreads throughout a semantic network, as dictated by the patterns of semantic similarity between words. We show that the activation profile of the network, measured at various time points, can successfully account for response times in lexical and semantic decision tasks, as well as for subjective concreteness and imageability ratings. We also show that the dynamics of the network is predictive of performance in relational semantic tasks, such as similarity/relatedness rating. Our results indicate that bringing together distributional semantic networks and spreading of activation provides a good fit to both automatic lexical processing (as indexed by lexical and semantic decisions) as well as more deliberate processing (as indexed by ratings), above and beyond what has been reported for previous models that take into account only similarity resulting from network structure

    Modelling the structure and dynamics of semantic processing

    No full text
    The contents and structure of semantic memory have been the focus of much recent research, with major advances in the development of distributional models, which use word co-occurrence information as a window into the semantics of language. In parallel, connectionist modeling has extended our knowledge of the processes engaged in semantic activation. However, these two lines of investigation have rarely been brought together. Here, we describe a processing model based on distributional semantics in which activation spreads throughout a semantic network, as dictated by the patterns of semantic similarity between words. We show that the activation profile of the network, measured at various time points, can successfully account for response times in lexical and semantic decision tasks, as well as for subjective concreteness and imageability ratings. We also show that the dynamics of the network is predictive of performance in relational semantic tasks, such as similarity/relatedness rating. Our results indicate that bringing together distributional semantic networks and spreading of activation provides a good fit to both automatic lexical processing (as indexed by lexical and semantic decisions) as well as more deliberate processing (as indexed by ratings), above and beyond what has been reported for previous models that take into account only similarity resulting from network structure
    corecore